

How to identify an appropriate research method and increase the rigor of your analysis

By

Jeong-Bon KIM City University of Hong Kong

For Presentation at

2014 IAAER Paper Development Workshop Florence, Italy November 15, 2014

- 1. Does Accounting Matter? Why?
- 2. Key Features of Capital Market Based (Empirical) Accounting Research?
- 3. Research Methods & Rigor (DiD & Variants):Identifying the cause-effect relation
- 4. New Research Paradigm (Third Moment Approach) and New Research Ideas

 What would be the two most significant inventions in the entire history of human civilization?

Two Most Significant Inventions?

Invention of Wheel

• Invention of DEBS (Double-Entry Bookkeeping System)

Does Accounting Matter?

Two Distinct Ways of Knowledge Creation

- Invention of Wheel:
 - Natural Science
 - Scientific discovery & technological innovation.
 - Discovery of new knowledge via Laboratory Experiment
- Invention of DEBS:
 - Social Science
 - Institutional infrastructure of any socio-economy.
 - Discovery of new knowledge by studying **History**: Archivalbased empirical research.
- A fascinating research question: How is accounting quality related to discovery/technological innovations?
- Is a natural experiment possible in archival-based accounting research???

Key Features of Capital Market- B Empirical Research

How to identify relevant research question of Hong Kong What are your research interests?

- Are you interested in how accounting values/amounts are related to mean, volatility or tail risk of return distributions? (Long-window, association studies)
- Are you interested in the impact of certain disclosures/announcements on return distributions? (**Short-window**, event studies)
- Are you interested in how new accounting standards and/or financial market regulations (e.g., Mandatory IFRS Adoption, SEC's XBRL Mandate) change the above relations?
 - New regulations often provide researchers with an opportunity for Natural Experiments.

Research Methods

- Association Tests:
 - Which Association?
 - The third moment approach

 Natural Experiments to examine the Impact of Accounting regulations

- Difference in differences design and its variants

Which Association do you have in minc 香港城市大學 City University of Hong Kong

- The first moment approach, focusing mean of return distribution (Traditional ERC research)
- P = a. + b.E + b.BV
- $\Delta P(t)/P(t-1) = a + b.\Delta E/P(t-1) + c.\Delta BV(=E)/P(t-1)$
- RET = $\Delta P(t)/P(t-1) = a + b.\Delta E/P(t-1) + c.E/P(t-1)$

The second moment approach, focusing on **symmetric volatility**: σ(RET) or Synchronicity, σ(E), σ(ΔE)

The third moment approach, focusing on asymmetric volatility, downside risk, and/or extreme negative tail risk.

Direction for Future Research

Under-researched, but Important, Question:

 How is accounting related to extreme negative tail risk (stock price crash risk) or extreme positive tail risk (jump risk)?

----Crash Probability

In many cases, Cross-sectional Association Tests are not sufficient.

Use Exogenous Shocks to strengthen cross-sectional associations!

- In many cases, a new regulation can be viewed as an exogenous shock to the existing system, thereby giving researchers an ideal setting of pre- vs. post-event comparison setting.
- Mandatory disclosure of ICW under SOX
- IFRS adoption by EU member countries
- The SEC's XBRL mandate
- Salary claw-back clause under Frank-Dodd Act
- Mandatory auditor rotation
- Privatization of SOEs in developing countries like China

Natural Experiment and Difference-in-Differences (DiD) Design

- DiD, if applicable, is the best way of identifying the cause-effect relation.
- Y = A + b.Treat + c.Post + d.Treat*Post + Controls
- Treat = 1 (0) for the treatment (control) sample
- Post = 1(0) for the post-event (pre-event) period
- Ideally, we want to show NO difference in effect between treatment and control during the pre-event period (b insig), and NO difference in effect between the pre- and post-event period for the control sample (c insig).
- We want to show that the **d-coeff** is significant.

	Pre-event (Post=0)	Post-event (Post =1)
Treatment sample (Treat =1)	A + b	A + b + c + d
Control sample (Treat =0)	A	A + c

When Natural Experiments are unavailable, fity University How to increase the rigor of your analysis? (Part 1): Change Analysis and Firm Fixed Effect

- Try to apply **difference/change analyses** whenever possible, using:
 - Deviation from industry or other cross-sectional mean
 - Change relative to last year ($\Delta X = Xt Xt 1$)
 - Help mitigate problems of omitted correlated variables and reverse causality
- **Firm fixed effect** regressions allow researchers to effectively control for time-invariant firm-specific factors (which omitted from the empirical model).

Firm Fixed Effect and Endogeneity

- Firm Fixed effect regressions also allow research to control for time-invariant firm-specific factors, and help address concerns about problems of omitted correlated vaiables and the associated endogeneity.
- For example, when examining the conservatism-crash relation, endogeneity problems arise in case that both crash risk and conservatism are correlated with:
 - Corporate governance mechanism
 - Manager quality
 - Other unknown factors
- To the extent that these governance or manager quality factors **remain relatively stable over time**, we can then alleviate this problem by using firm fixed effect regression for the panel data set.

When Natural Experiments are unavailable, How to increase the rigor of your analysis? for Hong Kong (Part 2): Dynamic Effect Analysis

- Try to analyze inter-temporal dynamic effect, as suggested by Bertrand & Mullainathan (2003: JPE): Y(t) refers to the event year
- Z = a0 + a1.Y(t-2) +a2.Y(t-1) +a3.Y(t) +a4.Y(t+1) + a5.Y(t+2) + CTLs

—If a1, a2 = 0 & a3, a4, a5 > (or <) 0, then the direction of causality is strengthened.

-|a1| = |a2| < |a3| < |a4| < or = |a5| suggests a learning effect.

-Useful to address the potential reverse causality.

Table 8 Dynamic Effects of XBRL Adoption 香港城市大學 City University

	(1)	(2)	(3)	(4)	(5)	(6) of Hong Kong	
Ln (# <mark>All</mark>	Ιn	Ln	Ln	%Individual	%Institutio	%Institutio	
	Ln (# <mark>All</mark>	LII (#Individual	(#Institutiona	(#Institution	70Inuiviuudi	nal Investor	nal Investor
	Investors)	(#Inuvitual	1 Investors	al Investors	Holdings	Holdings	Holdings
Var.		investors)	(Foreign))	(Domestic))	monumes	(Foreign)	(Domestic)
Year _{t-1}	0.013	0.026	0.003	-0.041	0.004	0.000	-0.004
	(0.456)	(0.168)	(0.751)	(0.182)	(0.299)	(0.582)	(0.161)
Year _t	0.026**	0.053**	0.034***	-0.074***	0.007**	0.003***	-0.010***
	(0.043)	(0.023)	(0.006)	(0.000)	(0.013)	(0.005)	(0.001)
Year _{t+1}	0.057**	0.084**	0.056	-0.091***	0.019***	0.007***	-0.026***
	(0.034)	(0.015)	(0.128)	(0.000)	(0.000)	(0.000)	(0.000)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm & Yr							
Fixed Effect	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Obs.	18,032	18,032	18,032	18,032	18,032	18,032	18,032
Adj. R ²	0.018	0.012	0.215	0.127	0.120	0.065	0.109
Year _t vs.							
Year _{t+1}	0.028	0.063	0.075	0.184	0.000	0.001	0.000
Diff:			0.070	0.101		0.001	0.000
<i>p</i> -value							

When Natural Experiments are unavailable, How to increase the rigor of your analysis? (Part 3): Self-selection Bias & Two-way Causation

Regulatory Mandate (Exogenous Event):

•Y = A + b.Treat + c.Post + d.Treat*Post + Controls

Voluntary Adoption (Endogenous Choice):

•Y = A + b.Treat + Controls

•For voluntary choice, Need to check for self selection bias and related endogeneity

- Heckman two-stage treatment effect model

Prob (Treat = 1) = a0 + a1.X1 + a2.X2 + a3.X3 + ...

-2SLS Regressions

-The Propensity Score Matching (PSM) is also useful for addressing self selection bias.

Checks for Potential Endogeneity

- (Pre- v. Post-Adoption Comparison): Using the sample of adopters only, check whether SYNCH decreases from the preto the post-adoption period.
- 2. (Pre-Adoption Inherent Difference in SYNCH) After dropping the post-adoption sample, check whether SYNCH differs between Never-Adopters and 'To-Be' Adopters in the pre-adoption period.
- 3. 2SLS
- 4. (PSM Sample): We match IFRS Adopters to Never Adopters using the predicted likelihood (propensity score) estimated from Eq. (3) with a max. allowable of PS of 0.1% and with Never Adopters being in the same industry, country and year.
- 5. (*GDiff* Effect): If IFRS reporting is a driving force that causes a decrease in *SYNCH*, we expect that *SYNCH*-reducing effect of IFRS reporting should be greater for firms in countries with large *GDiff*.

Table 5: Results for addressing potentia 大學 endogeneity checks

	(1) Pre- v. Post- Adoption (adopter sample)	(2) Never adopters v. 'To-Be' adopters	(3) 2SLS	(4) PSM sample	(5a) PSM sample, <i>GDiff</i> < Q1	(5b) PSM sample, Q1≤ <i>GDiff</i> <q2< th=""><th>(5c) PSM sample, Q2≤<i>GDiff</i> <q3< th=""><th>(5d) PSM sample, Q3≤<i>GDiff</i> <q4< th=""></q4<></th></q3<></th></q2<>	(5c) PSM sample, Q2≤ <i>GDiff</i> <q3< th=""><th>(5d) PSM sample, Q3≤<i>GDiff</i> <q4< th=""></q4<></th></q3<>	(5d) PSM sample, Q3≤ <i>GDiff</i> <q4< th=""></q4<>
DIFRS	-0.279**	-0.007	-0.545***	-0.251***	-0.073	-0.081	-0.392***	-0.508***
	(-2.20)	(-0.11)	(-6.96)	(-4.60)	(-0.50)	(-0.99)	(-4.22)	(-2.74)
Foll	0.009	0.024***	0.008	0.056***	0.014	0.040	0.139***	0.070
	(0.28)	(2.93)	(1.02)	(3.14)	(0.36)	(1.35)	(4.05)	(0.98)
DIFRS	0.136***	-0.033	0.205***	0.106***	-0.020	0.004	0.170***	0.245***
*Foll	(3.46)	(-1.14)	(5.92)	(3.99)	(-0.32)	(0.11)	(3.94)	(3.50)
N	1,160	14,318	15,382	3,327	640	981	1,435	271
R-Sq	43.02%	34.02%	34.51%	36.02%	39.70%	37.59%	38.77%	61.59%

New Direction & New Paradigm for Future Accounting Research: Third Moment Approach

- First moment approach in 1970-90:
 - Return-Earnings Association or ERC
 - Typically contemporaneous mean relation
- Second moment approach in 1990-2000
 - The impact of accounting choice or regulation on return volatility and stock price synchronicity.
 - The second moment approach inherently assumes Symmetric Relation.
- Third moment approach in 2010 and onward: Focus on
 - Accumulated effect, rather than periodic or contemporaneous effect.
 - Extreme negative outliers or tail risk.
 - Bad news or poor performance
 - Asymmetric Relation, asymmetric payoff function, convex compensation function

Suggestions on FUTURE Research Questions Consequences of Crash Risk

- Extant crash research focuses mainly on
 - Cross-firm determinants of crash risk, not the consequences.
- Crash risk is negative tail risk, and inherently related to **downside risk**, and thus, may be crucially important to debtholders.
- Crash risk reflects accumulated effects, and thus, cannot be diversified away unlike second-moment risk.
 - What about economic consequences of crash risk (using crash risk as the independent variable)?
 - Do debt market participants (e.g., bondholders, banks) anticipate crash risk in the equity market, and factor it into debt contracting, given that downside risk, not upside potential, is their primary concern?
 - Do short sellers (who trade on bad news) anticipate crash risk?
 - What would be the impact of crash risk on CDS premiums or spreads, given that CDS is an insurance vehicle for downside risk protection?

Ex Ante Expected Crash Risk vs. Ex Post Realized Crash Risk

香港城市大學 City University of Hong Kong

- Ex Post Actual CoC:
 - Realized, actually observed stock return.
- Ex Ante, Expected CoC:
 - Implied CoC, i.e., IRR implied by a valuation model
 - Need (unobservable) earnings forecasts data and thus suffer from measurement errors.
- Ex Post Actual (Realized) Crash risk:
 - Realized, actually observed crash risk such as CRASH, NCSKEW, DUVOL, etc.
- Ex Ante Expected Crash Risk: New Research Paradigm:
 - Implied Volatility Smirk = OTM Put Opt. IV ATM Call Opt. IV
 - Less measurement errors involved.

Concluding Remarks 如 Taration Taratio Taration Taration Taration Taration Taration

- In archival-based research, it is difficult, if not impossible, to completely rule out alternative explanations.
- DiD design is the most powerful, but is applicable to only special circumstances where natural experiments are possible.
- Ask yourself whether your research question allows you to apply the DiD design.
- If not, it is necessary to conduct a variety of sensitivity checks.

THANK YOU!